
Bifurcation using AUTO2000 and the

Auto2000 Tellurium Plugin

Continue with some bifurcation

1.1 Introduction

The AUTO2000 plugin serves as a front-end for the AUTO2000 library, which is a library for

continuation and bifurcation problems in ordinary differential equations 1.

Current limitations: Multiple continuation parameters are not supported, i.e. only one pa-

rameter can be selected for any continuation problem.

Available properties in the auto2000 plugin are documented in the next section.

1AUTO2000 by Eusebius J. Doedel , Randy C. Paffenroth, Alan R. Champneys, Thomas F.
Fairgrieve, Yuri A. Kuznetsov, Bart E. Oldeman, Björn Sandstede and Xianjun Wang. See
http://www.dam.brown.edu/people/sandsted/publications/auto2000.pdf.

1



1.2
P
lu
gin

P
rop

erties
2

1.2 Plugin Properties

The AUTO library has numerous properties that have been wrapped and made available to a plugin client. Each property is listed

below with its data type, default value and a short description. For the exact usage and a more in detail description please consult

the main AUTO2000 manual.

Property Name Data Type Default Value Description

SBML string N/A SBML document as a string. Model to be used by

AUTO

TempFolder string ”.” Folder used by auto and the plugin for saving temporary

files

KeepTempFiles bool false Boolean indicating if temporary files should be deleted

after an AUTO session or not

ScanDirection string ”Positive” Parameter instructing AUTO how to sweep its principal

continuation parameter

PrincipalCont-

inuationParameter

string N/A The principal continuation parameter (PCP) is the first

parameter that AUTO will sweep. Currently only one

parameter is supported, which by default is the PCP



1.2
P
lu
gin

P
rop

erties
3

BifurcationPoints vector<int> N/A This integer vector holds the exact point number (in

the sequence of all output data) for an AUTO solution

point. It can be used together with the labels in the

bifurcationlabels property to assist in plotting a bifur-

cation diagram

BifurcationLabels stringList N/A The string list holds the AUTO designated solution type

label for a solution point, as found in the bifurcation-

points property. Consult the AUTO documentation for

possible label types and their meaning

BifurcationData telluriumData N/A The BifurcationData property holds the bifurcation dia-

gram after a session. The first column contains the val-

ues of the selected parameter, and successive columns

are selected species

The following properties are used internally by the auto library. Depending on the problem at hand, they

may need to be tweaked.

fort2 string N/A Property containing the content of the AUTO tempo-

rary file, fort.2. Fort.2 is the input file for AUTO and

created by the plugin



1.2
P
lu
gin

P
rop

erties
4

fort3 string N/A Property containing the content of the AUTO tempo-

rary file, fort.3. The content of fort.3 file is undocu-

mented in AUTO’s documentation

fort6 string N/A Property containing the content of the AUTO tempo-

rary file, fort.6. The content of fort.6 file is a bifurcation

session summary

fort7 string N/A Property containing the content of the AUTO tempo-

rary file, fort.7. The content of fort.7 file is a bifurcation

diagram on success

fort8 string N/A Property containing the content of the AUTO tempo-

rary file, fort.8. The content of fort.8 file contain various

statistics from the session

fort9 string N/A Property containing the content of the AUTO tempo-

rary file, fort.8. Diagnostic messages, convergence his-

tory, eigenvalues, and Floquet multipliers are written in

fort.9

NDIM int 1 The NDIM property correspond to the dimension of the

system of equations

IPS int 1 Constant defining the problem type



1.2
P
lu
gin

P
rop

erties
5

IRS int 1 This constant sets the label of the solution where the

computation is to be restarted.

ILP int 1 Fold detection; 1=ON, 0=OFF

NICP vector<int> N/A Property denoting the number of free parameters

ICP int N/A Free parameters

NTST int 15 The number of mesh intervals

NCOL int 3 The number of collocation points per mesh interval

IAD int 3 Mesh adaption every IAD steps; 0=OFF

ISP int 1 Bifurcation detection; 0=OFF, 1=BP(FP),

3=BP(PO,BVP), 2=all

ISW int 1 Branch switching: 1=normal, -1=switch branch (BP,

HB, PD), 2=switch to two-parameter continuation (LP,

BP, HB, TR) 3=switch to three-parameter continuation

(BP)

IPLT int 0 This constant allows redefinition of the principal solu-

tion measure, which is printed as the second (real) col-

umn in the fort.7 output-file. See AUTO manual for

possible settings

NBC int 0 Number of boundary conditions

NINT int 0 Number of integral conditions



1.2
P
lu
gin

P
rop

erties
6

NMX double 1000 Maximum number of steps

RL0 double 0.01 The lower bound on the principal continuation parame-

ter

RL1 double 30 The upper bound on the principal continuation param-

eter

A0 double 0 The lower bound on the principal solution measure

A1 int 10000 The upper bound on the principal solution measure

NPR int 50 Save the solution in the solution file every NPR contin-

uation steps

MXBF int -1 Automatic branch switching for the first MXBF bifur-

cation points if IPS=0, 1

IID int 0 Control diagnostic output; 0=none, 1=little, 2=normal,

4=extensive

ITMX int 8, Maximum number of iterations for locating special so-

lutions/points

ITNW int 5, Maximum number of correction steps

NWTN int 3, Corrector uses full newton for NWTN steps

JAC double 0, User defines derivatives; 0=no, 1=yes

EPSL double 1e-8 Property setting the convergence criterion for parame-

ters



1.2
P
lu
gin

P
rop

erties
7

EPSU double 1e-8 Property setting the convergence criterion for solution

components

EPSS double 1e-6 Property setting the convergence criterion for special

points

DS double 0.001 Session start step size

DSMIN double 1e-5 Minimum continuation step size

DSMAX double 0.1 Maximum continuation step size

IADS int 1 Step size adaption every IADS steps; 0=OFF

NTHL int 0 The number of modified parameter weights (for BVP)

THL vector<int> N/A List of parameter weights

NTHU int 0 The number of modified solution component weights (for

BVP)

THU vector<int> N/A List of solution weights

NUZR int 0 The number of user output points specified

UZR vector<int> N/A List of values for user defined output

Table 1.1: Plugin Properties



1.3 The execute(bool inThread) function 8

1.3 The execute(bool inThread) function

The execute() function will start a bifurcation session. Depending on the problem at hand, the

algorithm may run for a long time.

The execute(bool inThread) method supports a boolean argument indicating if the ex-

ecution of the plugin work will be done in a thread, or not. If set to false, i.e. executing

execute(false), the function will be a blocking function and will not return until the plugin

work is done. If it is set to true, the execute(true) will return immediately and the plugin

work will be executed in a thread. The user can use the isPluginDone(plugin) to query the

status of the plugin progression.

The inThread argument defaults to false.

1.4 Plugin Events

The auto2000 plugin uses all of the available plugin events, i.e. the PluginStarted, PluginProgress

and the PluginFinished events.

The available data variables for each event are internally treated as pass through variables, so

any data, for any of the events, assigned prior to the plugins execute function (in the assignOn()

family of functions), can be retrieved unmodified in the corresponding event function.

Event Arguments Purpose and argument types

PluginStarted void*, void* Signal to application that the plugin has started.
Both parameters are pass through parameters and
are unused internally by the plugin.

PluginProgress void*, void* Communicating progress of fitting. Both param-
eters are pass through parameters and are unused
internally by the plugin.

PluginFinished void*, void* Signals to application that execution of the plugin
has finished. Both parameters are pass through pa-
rameters and are unused internally by the plugin.

Table 1.2: Plugin Events



1.5 Python example 9

1.5 Python example

The following Python script illustrates how the auto plugin can be invoked, how to set its

properties and finally how to plot a bifurcation diagram.

1 from teplugins import *

2
3 try:

4 sbmlModel ="BIOMD0000000203.xml"

5 auto = Plugin("tel_auto2000")

6
7 #print auto.listOfPropertyNames ()

8
9 #Setup Auto Propertys

10 auto.setProperty("SBML", readAllText(sbmlModel))

11
12 #Auto specific properties

13 auto.setProperty("ScanDirection", "Positive")

14 auto.setProperty("PrincipalContinuationParameter", "A")

15 auto.setProperty("PCPLowerBound", 10)

16 auto.setProperty("PCPUpperBound", 200)

17
18 #Max numberof points

19 auto.setProperty("NMX", 5000)

20
21 #Execute the plugin

22 auto.execute ()

23
24 # Bifurcation summary

25 print "Summary: " + auto.BifurcationSummary

26
27 #Plot Bifurcation diagram

28 pts = auto.BifurcationPoints

29 lbls = auto.BifurcationLabels

30 biData = auto.BifurcationData

31
32 biData.plotBifurcationDiagram(pts , lbls)

33
34 print "Done"

35
36 except Exception as e:

37 print "There was a problem: " + ‘e‘

Listing 1.1: Bifurcation example using a complex model.



1.5 Python example 10

Figure 1.1: Output for the example script above.


