
Add Noise Plugin

Add some noise

1.1 Introduction

The purpose of the AddNoise plugin is to introduce random noise to Tellurium data.

Noise generation uses the fact that a Rayleigh-distributed random variable R, with the prob-

ability distribution F (R) = 0 if R < 0 and F (R) = 1−exp(−R2/2∗σ2) if R >= 0, is related to a

pair of Gaussian variables C andD through the transformation C = R∗cos(θ) andD = R∗sin(θ),

where θ is a uniformly distributed variable in the interval (0, 2 ∗ π()) 1

Currently only Gaussian noise is implemented.

1.2 Plugin Parameters

Table 1.1 lists available plugin property names, along with their data type and purpose.

1.3 Plugin Events

The AddNoiseplugin uses all of the available plugin events, i.e. the PluginStarted, PluginProgress

and the PluginFinished events.

The available data variables for each event are internally treated as pass trough variables, so

1From Contemporary Communication Systems USING MATLAB(R), by John G. Proakis and Masoud Salehi,
published by PWS Publishing Company, 1998, pp 49-50.

1



1.4 The execute(bool inThread) function 2

Parameter Name Data Type Purpose

InputData TelluriumData Data on which noise will be applied to.
Sigma,(σ) double Size of applied noise. Noise is generated

for each single data value, with a probabil-
ity corresponding to a Gaussian distribu-
tion, centered around the value, and with
a variance equal to σ2 .

NoiseType int Type of noise applied on data. Only Gaus-
sian noise is currently supported.

Progress double The progress property communicates the
progress (in percent) of Noise application.

Table 1.1: Add noise Plugin Parameters

any data, for any of the events, assigned prior to the plugin’s execute function (in the assignOn()

family of functions), can be retrieved unmodified in the corresponding event function.

Event Arguments Purpose

PluginStarted void*, void* Signals to application that the plugin has
started applying noise on data. Both pa-
rameters are pass through parameters and
are unused internally by the plugin.

PluginProgress void*, void* Communicates progress of noise genera-
tion. Both parameters are pass through
parameters and are unused internally by
the plugin.

PluginFinished void*, void* Signals to application that execution of
the plugin has finished. Both parameters
are pass through parameters and are un-
used internally by the plugin.

Table 1.2: AddNoise Plugin Events

1.4 The execute(bool inThread) function

The execute() function will apply noise to all rows and columns of the assigned data, with one

exception. Data not affected are data in the first column, and if, and only if, its column header

equals ”time” (case insensitive).

The execute(bool inThread) method supports a boolean argument indicating if the execu-



1.5 Python examples 3

tion of the plugin work will be done in a thread, or not. Threading is fully implemented in the

AddNoise plugin.

The inThread argument defaults to false.

1.5 Python examples

1.5.1 Add noise to data acquired from RoadRunner

The python script below shows how to acquire simulation data from RoadRunner and pass it to

the noise plugin. The format of this data, which is obtained from the simulate() function (line

8), is not directly compatible with the Noise plugin’s InputData property. This incompatibility

is handled by an intermediate data structure in Python, called DataSeries (line 14).

The plugin’s properties, InputData and Sigma, are assigned on line 17 and 20 respectively.

Line 23 denotes the execution of the noise plugin, and after that has finished, data can be

visualized by using the plot function (line 26). The output is shown below the script.

1 import roadrunner

2 import teplugins as tel

3
4 try:

5 # Create a roadrunner instance and create some data

6 rr = roadrunner.RoadRunner ()

7 rr.load("sbml_test_0001.xml")

8 data = rr.simulate(0, 10, 511) # Want 512 points

9
10 #Add noise to the data

11 noisePlugin = tel.Plugin ("tel_add_noise")

12
13 # Get the dataseries from data returned by roadrunner

14 d = tel.getDataSeries (data)

15
16 # Assign the dataseries to the plugin inputdata

17 noisePlugin.InputData = d

18
19 # Set parameter for the ’size’ of the noise

20 noisePlugin.Sigma = 3.e-6

21
22 # Add the noise

23 noisePlugin.execute ()

24
25 # Get the data to plot

26 noisePlugin.InputData.plot()



1.5 Python examples 4

27
28 except Exception as e:

29 print ’Problem: ’ + ‘e‘

Listing 1.1: Add noise example.

Figure 1.1: Output for the AddNoise python example script discussed above

1.5.2 Visualization of the noise distribution used in the AddNoise

plugin

The Python script below demonstrates how to obtain and visualize the actual distribution (Gaus-

sian) of noise that is applied on data.

1 # Show that add noise plugin correctly computes Sigma (standard deviation)

2 import matplotlib.pyplot as plt

3 import scipy.stats as stats

4 import teplugins as tel

5 import numpy as np

6
7 p = tel.Plugin ("tel_add_noise")

8



1.5 Python examples 5

9 value = 2.34 #This will be the mean

10 n = 80000

11 inputData = np.zeros (shape =(1,2))

12 inputData [0] = [0, value]

13
14 data = tel.DataSeries.fromNumPy (inputData)

15 p.Sigma = 0.25

16
17 outArray = []

18 for i in range(n):

19 p.InputData = data

20 p.execute ()

21 outValues = p.InputData.toNumpy

22 outArray.append(outValues [0][1])

23
24 plt.hist(outArray , 200, normed=True)

25
26 # Overlay analytical solution

27 aRange = np.arange(min(outArray), max(outArray), 0.001)

28 plt.plot(aRange , stats.norm.pdf(aRange , value , p.Sigma), linestyle=’--’,

linewidth=’2’, color=’red’)

29
30 plt.show()

Listing 1.2: Noise distribution example.

Figure 1.2: Output for the AddNoise python example script discussed above


